Happy Friday,
We have the Novem employee picnic this afternoon and apparently there is going to be a bounce house. Sometimes it’s the little things.

Charlie Ruff, Portfolio Manager

Innovation as a Third Style


  • Skip to 9 minutes to avoid Jeremy Siegal rambling about macro data
  • “Growth” as Morningstar defines it is not the same as innovation.
  • Technology is just one type of innovation. Business models, service, customer experience etc…
    • Examples
      • Experience Innovation – Peloton
      • Business Model Innovation- Subscription-based businesses or ____as-a-service
  • Generally, innovators are taking market-share from less-innovative companies
  • Branching and paradigm shifts
    • VHS–>DVDs–>Streaming Video–>AVOD, SVOD, different types of business models that support distribution
  • Bottom-Up
    • Innovation at the company level
  • Middle-Level
    • Innovation networks or ecosystems are competing with other ecosystems.
  • It sounds like all innovators would be classified by Morningstar as “Growth” but not all Growth companies are innovators. Can a “value” stock be an innovator? If not, I would argue that Innovation isn’t really a third style so much as a sub-set of Growth…

Excerpt from Noise: A Flaw in Human Judgment by Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein

Well-trained physicians can come to different diagnoses, and even the same physician can come to different diagnoses if encountering the same data at different times. The variation is described as “noise”:

“When physicians offer different diagnoses for the same patient, we can study their disagreement without knowing what ails the patient. When film executives estimate the market for a movie, we can study the variability of their answers without knowing how much the film eventually made or even if it was produced at all. We don’t need to know who is right to measure how much the judgments of the same case vary. All we have to do to measure noise is look at the back of the target.

“To understand error in judgment, we must understand both bias and noise. Sometimes, as we will see, noise is the more important problem. But in public conversations about human error and in organizations all over the world, noise is rarely recognized. Bias is the star of the show. Noise is a bit player, usually offstage. The topic of bias has been discussed in thousands of scientific articles and dozens of popular books, few of which even mention the issue of noise. This book is our attempt to redress the balance.

“In real-world decisions, the amount of noise is often scandalously high. Here are a few examples of the alarming amount of noise in situations in which accuracy matters:

  • Medicine is noisy. Faced with the same patient, different doctors make different judgments about whether patients have skin cancer, breast cancer, heart disease, tuberculosis, pneumonia, depression, and a host of other conditions. Noise is especially high in psychiatry, where subjective judgment is obviously important. However, considerable noise is also found in areas where it might not be expected, such as in the reading of X-rays.
  • Child custody decisions are noisy. Case managers in child protection agencies must assess whether children are at risk of abuse and, if so, whether to place them in foster care. The system is noisy, given that some managers are much more likely than others to send a child to foster care. Years later, more of the unlucky children who have been assigned to foster care by these heavy-handed managers have poor life outcomes: higher delinquency rates, higher teen birth rates, and lower earnings.
  • Forecasts are noisy. Professional forecasters offer highly variable predictions about likely sales of a new product, likely growth in the unemployment rate, the likelihood of bankruptcy for troubled companies, and just about everything else. Not only do they disagree with each other, but they also disagree with themselves. For example, when the same software developers were asked on two separate days to estimate the completion time for the same task, the hours they projected differed by 71%, on average.
  • Asylum decisions are noisy.Whether an asylum seeker will be admitted into the United States depends on something like a lottery. A study of cases that were randomly allotted to different judges found that one judge admitted 5% of applicants, while another admitted 88%. The title of the study says it all: ‘Refugee Roulette.’ (We are going to see a lot of roulette.)
  • Personnel decisions are noisy. Interviewers of job candidates make widely different assessments of the same people. Performance ratings of the same employees are also highly variable and depend more on the person doing the assessment than on the performance being assessed.
  • Bail decisions are noisy. Whether an accused person will be granted bail or instead sent to jail pending trial depends partly on the identity of the judge who ends up hearing the case. Some judges are far more lenient than others. Judges also differ markedly in their assessment of which defendants present the highest risk of flight or reoffending.
  • Forensic science is noisy. We have been trained to think of fingerprint identification as infallible. But fingerprint examiners sometimes differ in deciding whether a print found at a crime scene matches that of a suspect. Not only do experts disagree, but the same experts sometimes make inconsistent decisions when presented with the same print on different occasions. Similar variability has been documented in other forensic science disciplines, even DNA analysis.
  • Decisions to grant patents are noisy. The authors of a leading study on patent applications emphasize the noise involved: ‘Whether the patent office grants or rejects a patent is significantly related to the happenstance of which examiner is assigned the application.’ This variability is obviously troublesome from the standpoint of equity.

“All these noisy situations are the tip of a large iceberg. Wherever you look at human judgments, you are likely to find noise. To improve the quality of our judgments, we need to overcome noise as well as bias.”

Illicit KFC


  • As libertarian AND a lover of fast food this story got me fired up.
  • Earlier this week, New Zealand (with +4 mil people) had 13 new cases of COVID. They have had 27 total COVID deaths. Twenty. Seven. Total. 80% of the population is vaccinated.
  • I’m astonished these sort of restrictions can happen in a democracy.

Bo Burnham is terrific and this song is stuck in my head… is this heaven?


“some random quote from Lord of the Rings incorrectly attributed to Martin Luther King”

  • Inside was a special Bo Burnham created for Netflix during the pandemic. The premise for the special was that he created and produced everything entirely by himself in his apartment. White Woman’s Instragram is just one part. Welcome to the Internet is another great.
  • So here we have a song poking fun at stereotypes on a Facebook (FB) platform, created with props ordered on Amazon (AMZN) and recorded on an Apple laptop (AAPL). This song was first released exclusively on Netflix (NFLX) and now I am sharing it via a Microsoft (MSFT) email account so you can access it on Youtube, a platform owned by Alphabet (GOOGL).
    • This guy literally locked himself away in isolation and these companies still made money off of him!!
  • Buy large cap growth?
  • Why do I bother reading 10-Ks?
Securities offered through American Portfolios Financial Services, Inc. (APFS), Member FINRA, SIPC. Advisory services offered through American Portfolios Advisors, Inc. (APA) and/or Novem Group, SEC-Registered Investment Advisers. Novem Group is independent of APFS and APA. Please refer to your representative’s FINRA BrokerCheck for firm affiliations. Any opinions expressed in this forum are not the opinion or view of Novem Group, APFS, or APA and have not been reviewed for completeness or accuracy. Any comments or postings are for informational purposes only and do not constitute an offer or a recommendation to buy or sell securities or other financial instruments. Readers should conduct their own review and exercise judgment prior to investing. Investments are not guaranteed, involve risk, may result in a loss of principal, and are not suitable for all types of investors. Past performance does not guarantee future results. (7/21)